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Abstract
Purpose: Increased use of deep learning (DL) in medical imaging diagnoses has led to more frequent use of 10-fold 
cross-validation (10-CV) for the evaluation of the performance of DL. To eliminate some of the (10-fold) repetitive 
processing in 10-CV, we proposed a “generalized fitting method in conjunction with every possible coalition of 
N-combinations (G-EPOC)”, to estimate the range of the mean accuracy of 10-CV using less than 10 results of 10-CV.

Material and methods: G-EPOC was executed as follows. We first provided (2N-1) coalition subsets using a specified N, 
which was 9 or less, out of 10 result datasets of 10-CV. We then obtained the estimation range of the accuracy by 
applying those subsets to the distribution fitting twice using a combination of normal, binominal, or Poisson distri-
butions. Using datasets of 10-CVs acquired from the practical detection task of the appendicitis on CT by DL, we 
scored the estimation success rates if the range provided by G-EPOC included the true accuracy.

Results: G-EPOC successfully estimated the range of the mean accuracy by 10-CV at over 95% rates for datasets with 
N assigned as 2 to 9.

Conclusions: G-EPOC will help lessen the consumption of time and computer resources in the development of computer- 
based diagnoses in medical imaging and could become an option for the selection of a reasonable K value in K-CV.

Key words: neural networks (computer), machine learning, learning curve, computer simulation, appendicitis, cross 
validation.
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Introduction
Computer diagnosis systems with deep learning (DL), 
which have made remarkable progress in recent years, are 
replacing the visual recognition that previously only hu-
mans could process. Medical imaging diagnoses have shown 
good compatibility with DL, and diagnostic radiology might 
change significantly with the incorporation of DL, before 

other medical fields. DL is used to identify liver tumours 
with dynamic contrast computed tomography (CT), to de-
tect cerebral aneurysms with magnetic resonance (MR) an-
giography, and to diagnose pulmonary tuberculosis, medias-
tinal adenopathy, and pulmonary nodules, and more [1-7]. 
DL compensates for the shortcomings of human intelligence 
that depend on the mental and physical state of the operator, 
and DL can be integrated in diagnostic systems. 



 Assessing G-EPOC using the appendicitis detection task of CT

e533© Pol J Radiol 2021; 86: e532-e541

However, the use of DL is still accompanied by many 
difficulties, and the algorithm structure of DL continues 
to be analysed and improved. DL is one of the machine 
learning algorithms comprised of multiple layers that 
consist of multiple collections of interconnected nodes.  
DL extracts abstract features while the input data trans-
fers from shallow layers to deeper layers, and the DL 
outputs an answer that essentially matches human inten-
tions. DL has been successfully applied to natural lan-
guage processing, visual object recognition, and speech 
recognition, which are difficult for conventional com-
puter processing [8-10]. Among the existing relevant 
algorithms, DL has a high affinity for medical image rec-
ognition [6]. 

Although DL requires training with a large amount of 
data and the adjustment of internal variable parameters to 
output the correct answer with high accuracy, DL has the 
advantage in that its performance improves in proportion 
to the size of the data. However, DL does not always give 
a proper answer to real-world questions even when its use 
provides a perfect score for the training datasets, in a phe-
nomenon known as ‘over-fitting’ [11]. In such cases, it is 
sometimes difficult to identify which of the data, training 
procedure, and/or algorithms cause the low performance 
of DL. Tools that rigorously evaluate the performance of 
DL are thus needed. 

K-fold cross-validation (K-CV) is one of the verifi-
cation methods most commonly used for evaluations of 
the performance of machine learning [12-16]. K-CV is 
performed as follows: 1) the dataset is split into K equal 
parts; 2) the ratio of the data is set as (1/K) and (1 – [1/K]) 
for the testing and training image numbers, respectively;  
3) the DL algorithm is trained with training images;  
4) the DL algorithm is tested with testing images to 
evaluate its judgment ability; 5) this process is repeated  
K times, each time with the selection of a different pair 
of testing and training datasets; 6) finally, the mean accu-
racy is determined by averaging the K test results. K-CV 
has the advantage of being a simple procedure without 
complicated mathematics, using a limited number of data 
under low bias. 

However, there are some issues relating to the unde-
fined optimal K value of K-CV. Although K-values are 
arbitrary, 5 or 10 for K (5- or 10-CV) is recommended 
in general [14-17]. The most common reason for recom-
mending 5-CV is that it takes less time to calculate than 
10-CV. In addition, the Pareto principle, otherwise known 
as the 80/20 law, in which most of the representative val-
ues of the whole group is yielded by 20% of the group, 
might also be related to the recommendation of 5-CV 
[16,17]. However, 5-CV has a lower accuracy value com-
pared to 10-CV because the accuracy value of DL substan-
tially depends on the training data volume, which is 4/5 of 
the total data in 5-CV and 9/10 in 10-CV [14]. 

The advantage of 10-CV is that the division of a data-
set according to decimal notation is simple and easy.  

The measurement error in 10-CV is relatively small com-
pared to that in 5-CV [13-15]. However, 10-CV has a dis-
advantage; i.e., its use requires the long-term use of com-
putational resources with 10 repetitions to train and test 
the DL. 5-CV is occasionally used to avoid such long-last-
ing computational processing [16]. A method that could 
skip some of the 10-fold repetitive processing in 10-CV 
without loss of accuracy is thus desirable. 

Noguchi et al. proposed a method with which the ac-
curacy value of 10-CV can be estimated using less than 
10 results of the 10-CV by the bootstrap method in con-
junction with every possible coalition of N-combinations 
[14]. They demonstrated that their method estimated the 
ranges including the mean accuracy value of 10-CV with 
the use of only 6 of 10 results of the 10-CV at a rate of 
over 95%; i.e., they showed that their boot-EPOC method 
could skip 4 of the 10 processing repetitions in 10-CV. 
However, the boot-EPOC method could not estimate 
the mean accuracy value using less than 6 of 10 results 
of the 10-CV. Here, we proposed the ‘generalized fitting 
method in conjunction with every possible coalition of 
N-combinations (G-EPOC)’, which can estimate the mean 
accuracy value of 10-CV using 2 to 9 results of the 10-CV 
at a rate of over 95%. We conducted the present study to 
validate the estimating ability of G-EPOC.

Material and methods

Study design

This study was approved by our hospital’s Institutional Re-
view Board, which waived the need for written informed 
consent from the patients. The study was conducted as 
part of a fundamental study on the development project 
of Computer-Assisted Diagnosis with Deep Learning  
Architecture (CADDELAC) for the detection of appen-
dicitis on CT.

Terminology

‘Mean accuracy’: The term ‘mean accuracy’ in this study 
denotes the average score from the 10 results of 10-CV.

‘Estimation’: G-EPOC is used not for the detection 
task of the appendicitis on CT but for predicting, or in 
other words ‘estimating’, the mean accuracy of 10-CV.

‘Combination’ and ‘Coalition’: The term ‘combination’ 
is used to denote a selection of items from a collection 
without regard for the order of selection. The number of N 
combinations from X elements is often denoted by XCN 
and is equal to X!/N!(X-N)!. 

The term ‘coalition’ is used as the number of N combi-
nations for all N from X elements [18]. For example, when 
we extract 3 samples, named s1, s2, and s3, we can build 
seven coalitions as |s1|, |s2|, |s3|, |s1, s2|, |s1, s3|, |s2, s3|, 
and |s1, s2, s3|. With N samples, the number of coalition 
subsets is (2N–1).
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Methodology of G-EPOC

G-EPOC is composed of 3 steps: 1) less than 10 data sets 
extracted from 10 results of 10-CV are incremented by the 
coalition method; 2) the mean and 95% confidence inter-
val (CI) upper and lower limits for each of incremented 
datasets are acquired by the primary statistical processing; 
and 3) these data undergo secondary statistical processing 
to determine the estimation range for the mean accuracy 
of 10-CV. This estimation range should include the mean 
accuracy of 10-CV. The details are provided below.

Test design

We performed 3 types of tests: a simulation test, a prac-
tical test, and a practical test using the first N sampling. 
In the simulation test, G-EPOC was evaluated for the 
datasets with severe distribution. In the practical test, we 
validated G-EPOC using 5 datasets of 10-CVs, which as-
sessed the ability of DL to detect the appendicitis on CT. 
In the practical test using the first N sampling, we evalu-
ated G-EPOC under the pragmatic process to obtain the 
estimation range. The details are as follows.

Simulation test

In the first test of G-EPOC, we estimated the ability  
of G-EPOC to estimate the range of the mean accuracy of 
10-CV using a simulation dataset as follows:
•	 Simulation dataset preparation: We formed one dataset 

comprising 10 samples of 100 items each, simulating the 
10 results of 10-CV. Each item had 0 points (for false) 
or 1 point (for true) in the Boolean expression man-
ner, and the possible summed scores in each sample 
thus ranged from 0 to 100. We set the distribution of 
the scores of the 10 samples to follow the sigmoid func-
tion 1/(1 + exp[– αx]) under α = 1.28 and x = 0.05 to  
0.95 with 0.1 as the increment, adjusting to the con-
ditions for the maximal and minimal scores ranging 
from 0 to 100. Figure 1 illustrates the distribution of 
the scores in the simulation dataset.

•	 Data processing: If we choose a given N, which is 9 or 
less, out of 10 samples in the simulation dataset, we 
can build (2N – 1) coalition subsets as mentioned above 
[18]. As the primary statistical processing, we applied 
the coalition subsets to the probability distribution  
fitting which was one of the mathematical curve fit-
ting methods. We then obtained (2N – 1) sets of 3 types  
of values including the means and the 95% CI upper 
and lower limits. From those sets, we composed 2 types 
of paired datasets: the mean versus the 95% CI upper 
limit, and the mean versus the 95% CI lower limit. 
As the secondary statistical processing, we applied these 
datasets to the generalized linear model fitting, which 
was another mathematical curve fitting method. We 
then obtained a total of 6 types of values: 2 of the mean 

values, 2 of the 95% CI upper limits, and 2 of the 95% 
CI lower limits.
We regarded a range between the 2 mean values ob-
tained in the secondary statistical processing as the stan-
dard estimated range. We also generated a wide estimat-
ed range from the maximal and minimal values of the 
6 values in the secondary statistical processing for the 
maximal upper limit and the minimal limit, respectively. 
If the estimation range limits were less than 0 or greater 
than 100, they were replaced with 0 or 100, respectively. 
Various mathematical distribution models can be used 
for the curve fitting method. In the primary and sec-
ondary statistical processing, we used 3 types of distri-
bution; the normal distribution, the Poisson distribu-
tion, and the binominal distribution. We thus obtained 
a total of 9 standard estimated ranges and 9 wide esti-
mated ranges. Figure 2 provides a schematic explana-
tion of the process for making the estimation ranges 
from N samples. 

•	 Judgement: We scored the estimation success rates if 
the range by G-EPOC included the true mean of all  
10 samples in the simulation dataset for all combina-
tions with N assigned as 2, 3, 4, …, and 9, with which 
the numbers of combinations were 10C2 = 45, 10C3 = 120, 
10C4 = 210, …, and 10C9 = 10, respectively. Finally, we 
selected the best series of statistical processing for each 
of N samples according to the following conditions:  
(1) more than 95% of the number rate of the successful 
estimated ranges, and (2) the narrowest averaged esti-
mated range width.

Figure 1. Distribution of the scores of 10 samples in the simulation dataset. 
We set the distribution to follow the sigmoid function 1/(1 + exp (–αx)) 
under α = 1.28 and x = 0.05 to 0.95 with 0.1 as the increment, adjust-
ing to the conditions for 100 and 0 for the maximal and minimal scores, 
respectively
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Practical test

In the second test for G-EPOC, we assessed the ability of 
G-EPOC to estimate the mean accuracy of 10-CV validat-
ing the practical datasets as follows:
•	 Patients: As the appendicitis group, we enrolled a to-

tal of 485 patients with appendicitis, who underwent 
a contrast-enhanced computed tomography examina-
tion (CECT) due to acute abdomen in the period from 
January 2010 to March 2019 (male/female, 269/216; age 
range/average, 6-98/38.5 years). They were diagnosed 
based on 1-mm slice thickness CT as well as clinical 
findings. The following CT criteria were used for diag-
nosing appendicitis [19-22]: appendix diameter of more 
than 6 mm, appendiceal wall enhancement, presence 
of appendicoliths, periappendiceal fat stranding, and 
concomitant abscess.
For the control group, we randomly selected 485 pa-
tients who underwent a CECT due to acute abdomen 
enrolled backward from March 2019 to December 
2016, in order to include the same number of patients 
as in the appendicitis group (male/female, 245/240; age 
range/average, 13-97/64.2 years). Their results were 
negative for appendicitis but might be positive for other 
acute abdominal disorders. Their detailed diagnoses are 
not provided here because they were too varied to de-
scribe and they were not relevant to the present study. 
Figure 3 shows representative examples of CT images in 
the appendicitis and control groups. 

•	 Computed tomography: Multidetector row CT was per-
formed using clinical CT units (Aquilion CX, Aquilion 64, 

and Aquilion ONE, Canon Medical Systems, Ohtawara, 
Japan; SOMATOM Definition Flash, Siemens Health-
ineers, Erlangen, Germany; Discovery CT750 HD;  
GE Healthcare, Chicago, IL). CT images were generated 
using a body window algorithm, a 220-500-mm field 
of view (FOV), 512 × 512 matrix, and a 1-mm slice.  
The iodine contrast agent was intravenously injected accord-
ing to the following protocols: iodine volume per weight, 
600 mgI/kg; Contrast agent, iopamidol (300 mgI/ml), 
iopamidol (370 mgI/ml), iohexol (300 mgI/ml), iohexol 
(350 mgI/ml), or iomeprol (300 mgI/ml); injection speed, 
5 to 2.0 ml/s bolus injection; start of helical scanning, 
70 to 230 s after the injection of the contrast. Decreased 
volumes were adopted in cases of the patient’s declining 
renal function based on the physician’s request. 

•	 Extraction of positive and negative image data: We chose 
20,690 positive images that included any cross-sections of 
the enlarged and enhanced appendix indicating appen-
dicitis extracted from the patients with appendicitis. We 
used multiple slices from the same subject as described 
previously [4,6,14].
We extracted 297,636 negative images from the control 
group, covering the entire abdominal areas.

•	 Practical dataset preparation: We prepared five datasets 
of 124, 250, 374, 500, and 624 pairs of the randomly 
extracted positive and negative CT images from both 
the appendicitis group and control group, respectively. 
The sizes of five datasets were adjusted to meet 100, 200, 
300, 400, and 500 pairs of the training images with the 
ratio of 1/10, 1/10, and 8/10 for the testing, verification, 
and training image numbers for each of the datasets.  

Figure 2. The process for making the estimation ranges from N samples. After we made (2N – 1) possible coalitions from N samples of 10 results of 10-CV, we 
applied them to 3 types of probability distribution fitting and then 3 types of generalized linear model fitting as the secondary processing. We then obtained 
the standard estimated range and the wide estimated range from the upper, mean, and lower limits of 95% CIs with N assigned as 2 to 9
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We regularized the sampling size based on the size of 
the training images instead of the total sample images 
because 10-CV could be more sensitive to the former 
than the latter [14]. We did not use all the 20,690 posi-
tive images because we realized that a 10-CV using 
20,690 positive images provided more than 90% of the 
mean accuracy, which had a ceiling effect and was thus 
not suitable for the current test.

•	 Image data processing: We used one of the representa-
tive DL convolutional neural networks, AlexNet, which 
was designed by Alex Krizhevsky and won the Image-
Net Large-Scale Visual Recognition Challenge in 2012, 
in the pre-trained state with over a million images from 
the ImageNet database (ImageNet. http://www.image-
net.org) [23]. We adopted the transfer learning method 
for training AlexNet as described previously [4,6,14]. 
The AlexNet that we used in this study did not support 
the Digital Imaging and Communications in Medicine 
(DICOM) format. Using the free software program 
Fiji (https://imagej.net/Fiji), we converted these im-
ages from the DICOM format into Portable Network 
Graphics (PNG) with 16-bits and 227 × 227 pixels of the 
image size with adjustment of the brightness and con-
trast of the original DICOM image by using the look-
up-table (LUT) function in the Fiji program. 

•	 10-CVs for validating AlexNet enabled for the task of 
detecting appendicitis: We applied 10-CV to the above-
mentioned 5 practical datasets as follows. (1) The dataset 
was split into 10 equal parts. (2) The ratio of the data 
was set as 1/10, 1/10, and 8/10 for the testing, validation, 
and training image numbers, respectively. (3) AlexNet 
was trained with the training images. (4) AlexNet was 
validated with the validation images to prevent over-
training. (5) AlexNet was tested with the testing images 
to evaluate its judgment ability. (6) This process was re-
peated 10 times, each time with a different 3 parts of 
testing, validation, and training datasets. (7) The mean 

accuracy was determined by averaging the 10 results of 
the testing.
As the referential standard, we determined the mean 
accuracies and the 95%CI ranges with the t-distribution 
calculated from the result datasets of the 10-CV in each 
of the 5 practical datasets. 

•	 Testing and judgment: We changed each of the result 
datasets to the Boolean expression consisting of 0 points 
for false and 1 point for true. We applied each of the  
N samples extracted from the result datasets of the 10-
CV in each of the 5 practical datasets to the best G-EPOC 
processing determined in the simulation test as described 
above. We scored the number rates of the estimation range, 
which successfully included each of the mean accuracies 
of 10-CVs of the 5 practical datasets for all combinations 
with N assigned as 2 to 9. We then recorded the successful 
estimation rates, the average of the successful estimated 
range widths, and the averages of upper and lower limits of 
the successful estimated ranges. We plotted the mean accu-
racy line of the 5 practical datasets in conjunction with the 
averaged estimation range areas (ERAs) whose upper and 
lower boundary lines were the averaged upper and lower 
limits of the successful estimated ranges by G-EPOC.

Test using the first N sampling

In the third test for G-EPOC, we estimated the ability of 
G-EPOC in the following pragmatic situation:

In a pragmatic situation, G-EPOC users do not neces-
sarily calculate all combinations with a given N, which 
is assigned as 2 to 9, out of the result datasets of 10-CV. 
Instead, they may stop performing 10-CV halfway and 
use the first N of the result datasets of 10-CV for mak-
ing the estimation range. Moreover, they may regard the 
midpoint of the estimation range by G-EPOC as a sur-
rogate estimated value for the mean accuracy of 10-CV. 
Assuming such a case, we made the following judgment: 

Figure 3. Representative examples of CT images in the appendicitis and control groups. A) Contrast-enhanced abdominal CT of a 32-year-old male in  
the appendicitis group shows an enlarged appendix with thickened wall enhancement (arrowheads) in conjunction with fluid and an appendicolith inside 
(arrow) at the right lower quadrant in the abdomen. B) The CECT of a 54-year-old female in the control group shows a normal gas-filled appendix with 
non-enhanced thin wall (arrowheads) at the apex of the cecum

A B
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We obtained the midpoints between the upper and lower 
limits of the estimation range in each of the first sampling 
trial with N assigned as 2 to 9. We recorded the number 
N as successfully estimated by G-EPOC when the 95% CI 
ranges with the t-distribution of the 5 practical datasets 
included the midpoints provided by G-EPOC. We plotted 
the mean accuracy line and the 95% CI range areas with 
the t-distribution of the 5 practical datasets, plus the mid-
point lines afforded by G-EPOC from the result datasets 
of the 10-CV in each of the 5 practical datasets for the first 
N sampling. We also evaluated the expected time-saving 
(%) of the first N of the result datasets of 10-CV calculated 
from (C – (A + B))/C, where A was equal to the process-
ing time (s) of the first N sampling of G-EPOC, B was 
equal to the acquisition time (s) of the first N sampling 
of the practical datasets of 10-CV, and C was equal to  
the acquisition time (s) of all 10 result datasets of 10-CV.

Other conditions

Hardware and software for computational processing

We used a custom-built image processing computer  
(TEGARA Corp., Hamamatsu, Japan) containing a Quadro 
P2000 5 GB graphics processing unit (Nvidia Corp., 
Santa Clara, CA), an Intel Xeon E5-2680v4 2.40 GHz 
processor (Intel Corp.), 1.0 TB of hard disk space, and 
64 GB of RAM. We used MATLAB software (ver. 2018b; 
MathWorks Inc., Natick, MA) for all statistical computa-
tional processing. The AlexNet algorithm that we used was 
distributed as add-on software of MATLAB. 

Results

Simulation test 

For the best series of the primary and secondary statisti-
cal processing, we identified the binominal and binominal 
distri bution models for N as 2, the normal and binomi- 
nal distribution models for N as 3 to 8, and the Poisson 

and normal distribution models for N as 9. We adopted 
the wide estimated ranges for N as 2 to 8 and the standard 
estimated range for N as 9. As a result, we obtained 98% to 
100% successful estimation rates with all numbers of sam-
pling out of 10 samples in the simulation dataset. When 
the N was increased from 2 to 9, the averaged widths of the 
successful estimated ranges narrowed from 88.8% to 13.6%. 
Table 1 summarizes the results of the simulation test. 

Practical test

We obtained 98% to 100% successful estimation rates for 
all numbers of sampling in the 5 practical datasets by ap-
plying those datasets to the best series of the successful 
estimation processing obtained in the simulation test.  
Table 2 shows the mean accuracies of the 5 practical data-
sets, the averages of those estimated range widths, and the 
averages of the upper and lower limits of those estimated 
ranges by G-EPOC. Figure 4 illustrates the mean accuracy 
line of the 5 practical datasets and ERAs with the N as-
signed as 2 to 9 by G-EPOC. The mean accuracy line is 
completely covered by ERAs by G-EPOC. The upper and 
lower limits of the ERAs approached the mean accuracies 
of 10-CV results as the number of samplings increased.

Table 1. Results of the simulation test

Number of samplings 
from 10 samples  
in simulation dataset

Distribution model 
used in the primary 

statistical processing

Distribution model 
used in the secondary 
statistical processing

Use of wide 
estimated 

range

Successful 
estimation rate 

(%)

 Average of successfully 
estimated range width 

(%)

2 Binominal distribution Binominal distribution Yes 100 88.8

3 Normal distribution Binominal distribution Yes 100 73.3

4 Normal distribution Binominal distribution Yes 100 58.7

5 Normal distribution Binominal distribution Yes 100 46.2

6 Normal distribution Binominal distribution Yes 100 36.2

7 Normal distribution Binominal distribution Yes 99 28.6

8 Normal distribution Binominal distribution Yes 98 22.9

9 Poisson distribution Normal distribution No 100 13.6

Table 2. Results of the practical test

Number of samplings 
from 10 samples  
in simulation dataset

Successful 
estimation rate 
(mean/range)

Average of successfully 
estimated range width 
(mean/range)

2 100.0% (98-100) 87.6% (85.5-91.3)

3 100.0% (100-100) 73.6% (67.6-79.8)

4 99.7% (94-100) 60.8% (49.7-76.4)

5 98.8% (92-100) 51.0% (36.8-76.1)

6 98.0% (88-100) 43.9% (30.4-83.8)

7 98.0% (90-100) 39.2% (26.1-89.5)

8 98.5% (89-100) 36.2% (21-95.6)

9 99.0% (72-100) 13.8% (8.7-16.4)
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Figure 4. The mean accuracy line for 5 practical datasets and the estimation range areas (ERAs) by G-EPOC. The mean accuracy line is completely covered 
by ERAs by G-EPOC

Test using the first N sampling

The midpoints of the ranges between the upper and lower 
limits of the first N sampling with the N assigned as 8 and 
9 by G-EPOC were included by the 95% CI range with the 
t-distribution for all 5 practical datasets. However, some 
of the midpoints with the N assigned as 5 to 7 and all of 
those with the N assigned as 2 to 4 missed the 95% CI 
range with the t-distribution. Figure 5 provides the mean 
accuracy line and the 95% CI range areas with the t-dis-
tribution calculated from the 5 practical datasets, plus the 
midpoint lines from the result datasets of the 10-CV in 

each of the 5 practical datasets for the first N sampling by 
G-EPOC with the N assigned as 2 to 9. 

Tables 4-6 show the processing time (sec) of the first 
N sampling of G-EPOC, the acquisition time (sec) of the 
first N sampling of the practical datasets including the 
total 10 result datasets of 10-CV, and the expected time-
saving (%) of the first N of the result datasets of 10-CV. 
The acquisition times of the first N sampling of the practi-
cal datasets ranged from 363 to 8118 sec, whereas the pro-
cessing time of G-EPOC ranged from 0.61 to 3.64 sec. The 
expected time-saving (%) was thus approximately 10% per 
one result of 10-CV skipped.

Figure 5. The mean accuracy line and 95% CI range areas with t-distribution of the 5 practical datasets, and the midpoint lines in each for the first N sam-
pling trial. The midpoints of between the upper and lower limits of the first sampling by G-EPOC with 8 and 9 as the N were included by the range of 95% CI 
with the t-distribution of all 5 practical datasets. However, some of the midpoints with the N assigned as 5 to 7 and all of those with the N assigned as  
2 to 4 missed the 95% CI range with the t-distribution
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Discussion
In the simulation test, we obtained 98% to 100% success-
ful estimation rates with all numbers of sampling out of 
10 samples in the simulation dataset. Because the possi-
ble summed scores in one sample thus ranged from 0 to 
100, which presumed the extreme case, our present analy-
ses clarified that G-EPOC could estimate the range of the 
mean accuracy by any situation of 10-CV using less than 
10 results at the rates of more than 95%. We adopted the 

standard or wide ranges calculated by the primary and sec-
ondary statistical processing using the binominal, normal, 
or Poisson distribution, although the mathematical appro-
priateness for the current processing was not clarified.

In the practical test, we obtained 98% to 100% suc-
cessful estimation rates for all numbers of sampling in the  
5 practical datasets by G-EPOC using the best series of the 
successful estimation processing obtained in the simula-
tion test. Our results confirmed that G-EPOC could es-
timate the range of the mean accuracy by any situation of 

Table 3. Results of the random dataset test

Number of 
sampling from 
10 samples 
in 10-CV for 
practical 
dataset

Pair 
number of 

positive and 
negative 
images

Averaged upper and lower limits and midpoints of the estimation ranges  
(midpoint [upper limit – lower limit / width])

124 250 374 500 624

2   56% 
(12.3-99.7/87.4)

58% 
(16.1-99.9/83.8)

58.4% 
(17.1-99.7/82.6)

58.4% 
(16.9-99.9/83)

57.9% 
(15.9-99.9/84)

3   62.9% 
(26.3-99.6/73.3)

68.3% 
(36.9-99.7/62.8)

67% 
(35.1-99/64)

69.6% 
(39.7-99.5/59.8)

69.3% 
(39.3-99.4/60.1)

4   68.7% 
(38.1-99.3/61.2)

75.1% 
(51.3-99/47.7)

73.3% 
(48.9-97.6/48.7)

77.1% 
(55.5-98.8/43.3)

77% 
(55.5-98.5/43)

5   73.4% 
(47.5-99.2/51.7)

79.6% 
(61.3-97.8/36.5)

77.4% 
(58.9-95.9/37)

81.6% 
(65.7-97.6/31.9)

81.2% 
(65.3-97.1/31.8)

6   76.9% 
(54-99.8/45.8)

82.3% 
(68.1-96.6/28.5)

79.5% (65.1-
93.9/28.9)

84.2% 
(72.1-96.3/24.2)

83.8% 
(71.9-95.7/23.9)

7   79.2% 
(58.6-99.9/41.3)

83.7% 
(72.3-95.2/22.9)

81% 
(69.6-92.3/22.7)

85.5% 
(76.1-94.9/18.9)

85.2% 
(76-94.4/18.4)

8   80.8% 
(61.7-100/38.3)

84.5% 
(75.1-93.9/18.7)

81.4% 
(72.2-90.6/18.4)

86.3% 
(78.8-93.8/15)

85.9% 
(78.6-93.2/14.5)

9   77.9% 
(59.7-96.1/36.4)

85.8% 
(72.7-98.8/26.1)

82.4% 
(71.9-92.8/21)

87.3% 
(78.1-96.6/18.6)

86.8% 
(78.5-95.1/16.6)

10 (=total 
acquisition)

  76.7% 
(72.7-88.7/16)

85.6% 
(80.6-91.1/10.5)

82.3%
(83-90/7)

87.3% 
(71.6-93.2/21.6)

86.8% 
(78-92/14)

Table 4. Acquisition time (sec) of the first N sampling of G-EPOC

Number of the first 
sampling from 10 samples 
in 10-CV for practice dataset

Pair number of positive 
and negative images

Acquisition time (sec) of the first N sampling of G-EPOC

124 250 374 500 624

2   0.28 0.29 0.26 0.26 0.29

3   0.38 0.35 0.34 0.34 0.37

4   0.39 0.41 0.39 0.38 0.39

5   0.49 0.48 0.48 0.49 0.5

6   0.66 0.68 0.67 0.69 0.69

7   1.03 1.05 1.06 1.09 1.12

8   1.79 1.85 1.86 1.92 1.92

9   3.28 3.38 3.45 3.54 3.64
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Table 5. Acquisition time (s) of the first N sampling of the practical datasets 

Number of the first sampling 
from 10 samples in 10-CV for 
practice dataset

Pair number of positive 
and negative images

Acquisition time (sec) of the first N sampling of the practical dataset

124 250 374 500 624

2   363 670 1044 1535 1642

3   639 920 1672 2174 2532

4   755 1284 2413 3293 3191

5   946 1572 3240 4043 4220

6   1155 1879 3559 4903 5249

7   1402 2243 4019 5652 5862

8   1452 2702 4366 6734 6661

9   1652 2896 4628 7779 7459

10 (= total acquisition)   1824 3506 5060 8270 8118

Table 6. Expected time-saving (%) of the first N of the result datasets of 10-CV

Number of the first sampling 
from 10 samples in 10-CV for 
practice dataset

Pair number of positive 
and negative images

Expected time-saving (%) of the first N of the result datasets of 10-CV

124 250 374 500 624

2   80% 81% 79% 81% 80%

3   69% 74% 67% 74% 69%

4   61% 63% 52% 60% 61%

5   48% 55% 36% 51% 48%

6   35% 46% 30% 41% 35%

7   28% 36% 21% 32% 28%

8   18% 23% 14% 19% 18%

9   8% 17% 9% 6% 8%

10-CV using less than 10 results in a practical situation. 
Figure 4 demonstrates that the upper and lower limits of 
the estimation range of G-EPOC approached the mean 
accuracies of 10-CV results as the number of samplings 
increased. However, the estimation ranges of G-EPOC are 
apparently wider compared to the 95% CI ranges of 10-CV 
results with t-distribution. This is a compensatory trade-off 
for accomplishing over 95% accuracy.

We assessed the pragmatic use of G-EPOC; i.e., the 
midpoint of the estimation range with the first N sampling 
as a surrogate estimated value. As a result, the midpoints of 
the estimation range with the N assigned as 8 and 9 were 
placed inside of the 95%CI range with the t-distribution 
of the 5 practical datasets. Therefore, G-EPOC might be 
effectively used with the N assigned as 8 or 9, in which ap-
proximately 10% to 20% would be spared because about 
10% of time-saving per one result of 10-CV was confirmed.

G-EPOC has been proposed as an option for the selec-
tion of the optimal K value in K-CV; i.e., it is possible to 
make an almost perfect estimation even if the training and 
validating DL is repeated fewer than 10 times in 10-CV. 
Although G-EPOC does not necessarily have a direct 

clinical contribution, G-EPOC as an alternative to 10-CV 
will save time and computer resources in the process of 
developing the CADDELAC system. G-EPOC might 
be also effective for the early introduction of the CAD-
DELAC system for clinical applications.

There are some limitations to this study. Narrower 
range estimations should be achieved with further inves-
tigations, although we suggested the pragmatic use of the 
midpoint of the estimation range with the first N sam-
pling. The G-EPOC findings obtained herein are empiri-
cal results, and there is still no mathematical or statistical 
basis to support them. Further research is required.

Conclusions
G-EPOC demonstrated over 95% successful estimation 
for the accuracy determined by 10-CV, using less than 
10 results of 10-CV, which was confirmed by the datasets 
obtained from the real detection task of appendicitis on 
CT by AlexNet. Our series will help lessen the consump-
tion of time and computer resources in the development 
of computer-based diagnoses in medical imaging.
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